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• Application of QMOM in a large scale chemical transport model
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IMPORTANCE OF ATMOSPHERIC AEROSOLS

• Human health - impairment via inhalation

• Light scattering and absorption - visibility, climate change

• Heterogeneous reactions - stratosphere, troposphere

• Modification of cloud physical properties - hydrology and climate

• Modification of fog, cloud, and precipitation composition

Understanding and describing the role of aerosols in these phenomena
require size- and composition-dependent treatment of chemical and
physical processes involving aerosols.

This descriptive capability must be represented in atmospheric
transport and transformation models on a variety of scales from
regional to global.





REPRESENTATIONS OF AEROSOL
SIZE DISTRIBUTION

Whitby, Atmos. Environ., 1978



SIZE MATTERS
Light scattering efficiency of ammonium sulfate vs. radius
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Data of Ouimette and Flagan, Atmos. Environ., 1982



KEY AEROSOL OPTICAL PROPERTIES

Aerosol optical thickness, τ aerosol
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α  is largest for smallest particle size.

Aerosol radiative forcing

Forcing = Flux(aerosol) - Flux(no aerosol)

Flux may be at top of atmosphere or surface.



SIZE DEPENDENCE OF AEROSOL OPTICAL
DEPTH AND TOA RADIATIVE FORCING

Ammonium Sulfate, 10 mg (sulfate) m-2 at 80% RH

 Cloud-free Sky, Surface Reflectance 0.15
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MONTHLY AVERAGE AEROSOL JUNE 1997

Optical Thickness at 865 nm

Ångström Exponent
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MOMENTS OF THE PARTICLE SIZE DISTRIBUTION

µk
kr

dN

dr
dr≡ ∞

∫ ( )
0

     (not normalized)

Moment Physical Interpretation Unit

µ0 Particle number concentration cm-3

µ1 Total radius per unit volume cm cm-3

µ2 ( )4 1π − × Area per unit volume cm2 cm-3

µ3 ( )4
3

1π − × Volume per unit volume cm3 cm-3

Particle Size Distribution
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λ = 0.55 µm
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EVALUATION OF AEROSOL PROPERTIES
Aerosol properties are integrals of kernel function over size distribution

P r f r dr=
∞

∫ σ ( ) ( )
0

Property (P) Kernel (σ)

Particle number density
Surface area density
Volume concentration

1
r2

r3

Optical properties Optical kernels
scattering r2 × Qs →
forcing
Ångström exponent
effective radius µ3/µ2

Cloud activation
PM 2.5

Step function
H(r-r0)

Concentration at
specific radius r0

Delta function
δ(r-r0)



AEROSOL PHYSICAL PROPERTIES
HOW TO OBTAIN FROM MOMENTS?

Aerosol physical or optical properties are an integral
over the size distribution, requiring integrals like

P r f r dr=
∞

∫ σ ( ) ( )
0

where the kernel function σ ( )r  describes the property
of interest.

Most integration (quadrature) methods require that the
integrand be known as some set of points, for example
Simpson's rule:

In our case σ ( )r  is known, but the distribution function
f r( ) is not known, only a few of its moments.



CALCULATING AEROSOL PROPERTIES
BY GAUSSIAN QUADRATURES

Problem:  How to evaluate integrals over the aerosol
size distribution when only the lower-order moments
of the distribution  are known???

Solution: Gaussian quadrature

σ σ( ) ( ) ( )r f r dr r wi
i

N

i≈
=

∞ ∑∫
1

0

Here σ ( )r  is the known kernel function and f r( ) is the
unknown size distribution.

The N abcissas { ri} and N weights { wi } are
determined from 2N moments of f r( )  by inversion of

µk
k

i
k

i

N

ir f r dr r w≡ =
=

∞ ∑∫ ( )
1

0
   k = 0, 1, …, 2N-1.



DISTRIBUTIONS USED IN TEST OF RETRIEVAL
OF OPTICAL PROPERTIES FROM MOMENTS
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SKILL OF GAUSSIAN QUADRATURES
TO OBTAIN AEROSOL OPTICAL PROPERTIES

FOR 28 TEST DISTRIBUTIONS
Index of refraction n = 1.55 - 0i
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THE MOMENTS DO NOT UNIQUELY DEFINE
THE DISTRIBUTION

Question: How many identical moments do the following
distributions have in common?
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Answer: Infinitely many!  These distributions have identical
moments for all non-negative integer values of k.

µk
kr f r dr≡ ∞

∫ ( )
0

Despite the differences in the distributions, the optical
properties are virtually identical!
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SKILL OF MIDAS METHOD
(Multi Isomomental Distribution Aerosol Simulator)
TO OBTAIN AEROSOL OPTICAL PROPERTIES

FOR 28 TEST DISTRIBUTIONS
Index of refraction n = 1.55 - 0i
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AEROSOL DYNAMICS BY THE
METHOD OF MOMENTS

The method of moments is an approach to
describing aerosol properties and dynamics in terms of
the moments µk of the radial number size distribution
f r( ).

µk
k

r f r dr= ∞∫0 ( )

Aerosol properties (e.g., light scattering coefficient)
can be accurately represented as simple functions of
low order moments.

Aerosol dynamics can be represented by growth laws
(differential equations) in the moments.

The moments advect and mix just like chemical
species--they are conserved and additive.

Hence representing aerosol properties and dynamics in
3-D transport models is equivalent to representing a
small number of additional chemical species -- the low
order moments.



METHOD OF MOMENTS
Heuristic Description

Consider accretion of monomer by existing aerosol.

This can be considered a reaction between monomer
(m) and aerosol surface area (A)

m A

kmA

+ → slightly larger distribution

Rate =  

Aerosol surface area density is

A r f r dr= ∫ =∞ 4 42
0 2π πµ( )

So accretion of monomer by existing aerosol is a
reaction between monomer and second moment.



METHOD OF MOMENTS
General Description

Consider the growth law for particles of radius r:

dr

dt
r r ( ) = φ( )

The corresponding moment evolution equation is:

1 1
0k

d

dt
r r f r drk

kµ φ= −∞
∫ ( ) ( )

Closure of the moment evolution equations requires the
growth law to be of the form:

φ( )r a br= +

where a and b are independent of r.  In this case
moment evolution is evaluated as:

1 1

1

1

k

d

dt
r r f r dr

a r f r dr b r f r dr

a b

k
k

k k

k k

µ φ

µ µ

= ∫

= ∫ + ∫
= +

−

−

−

( ) ( )

( ) ( )

This case includes free-molecular growth, φ( )r a= .



QUADRATURE METHOD OF MOMENTS

The requirement that the growth law be of the form

  φ( )r a br= +

is not generally satisfied.

The quadrature method of moments evaluates the
moment evolution equation

d

dt
k r r f r drk

kµ φ= −∞
∫ 1
0

( ) ( )

by Gaussian quadratures:

d

dt
k r r wk i

k

i
i iµ φ≅ −

=
∑ 1

1

3
( )

This approach is completely general and highly
accurate.

R. McGraw, Aerosol Sci. Technol. (1997)



COMPARISON OF EXACT AND QUADRATURE MOMENT EVOLUTION
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CONDITIONS OF TESTS FOR SKILL
OF QUADRATURE METHOD OF MOMENTS

QMOM was extensively compared in box-model calculations
to results obtained by discrete integration of the PSD.

Initial aerosol Initial concentrations Test case  Dry deposition Cloud 
type  

 

N0 

cm-3 

rg  

µm 

σg [H2SO4]0  

mol cm-3 

[SO2]0 

mol cm-3 

1-3 none Cumulus 0 0 0 0 0 

4-6 none Cumulus 100 0.01 2.0 0 0 

7-9 none Stratiform 100 0.01 2.0 0 0 

10-12 none Stratiform 100 0.01 2.0 5.0x10-15 1.0x10-12 

13-15 none Cumulus  100 0.01 2.0 5.0x10-15 1.0x10-12 

16-18 none Cumulus 0 0 0 5.0x10-15 1.0x10-12 

19-21 to land (W = 5.0 m/s) Cumulus 0 0 0 5.0x10-15 1.0x10-12 

22-24 to ocean (W = 10 m/s) Stratiform 100 0.01 2.0 5.0x10-15 1.0x10-12 

25-27 none  Stratiform 100 0.10 2.0 5.0x10-15 1.0x10-12 

28-30 none Stratiform 1000 0.10 2.0 5.0x10-15 1.0x10-12 

 number

Each aerosol test case was run for three sets of meteorological conditions.
Wright, Kasibhatla, McGraw and Schwartz, JGR, in press, 2001



DISTRIBUTIONS IN TESTS OF SKILL OF
QUADRATURE METHOD OF MOMENTS

Initial Final

Wright, Kasibhatla, McGraw and Schwartz, JGR, in press, 2001



MOMENT EVOLUTION AND ERRORS IN
BOX MODEL TESTS OF SKILL OF

QUADRATURE METHOD OF MOMENTS
Comparison of QMOM vs. discrete integration of PSD
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Departures are associated mainly with cloud events.

Some of the departures are attributable to errors in discrete
integration.

Wright, Kasibhatla, McGraw and Schwartz, JGR, in press, 2001



COMPARISON OF CLOUD DROPLET
NUMBER CONCENTRATION BETWEEN

MOMENT AND DISCRETE MODELS

Discrete Model

Moment Model

Wright, Kasibhatla, McGraw and Schwartz, JGR, in press, 2001



Aerosol Chemical Transport Model GChM-O

Moments
Microphysical Properties
Optical Properties
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MODEL DOMAIN AND GRID CELL STRUCTURE
1.125˚ latitude and longitude; 15 terrain-following vertical levels

61 × 180 × 15  = 164,700 grid cells
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MODELING EVOLUTION OF AEROSOL LOADING AND PROPERTIES

Moment-based representation of aerosol microphysics
Day Log10 N Log10 µ3 Mean Radius

 1

 3

 7

10

Based on Wright, McGraw, Benkovitz, and Schwartz, GRL, 2000



AEROSOL PROPERTIES FROM SUBHEMISPHERIC SULFATE
TRANSPORT AND TRANSFORMATION MODEL

835 nm      October 14-31, 1986
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APPROACHES TO REPRESENTING AEROSOL SIZE
DISTRIBUTION AND ITS EVOLUTION IN MODELS

Conventional Moment Methods

Size distribution
represented by...

Number of particles in bins
as function of radius Ni(ri)

Moments, µ = ∫k
kr N r dr( )

Aerosol
evolution
represented by...

Differential equations in
Ni(ri)

Differential equations in
low-order moments,
k = 0 ... 5

Aerosol
properties
represented by...

Direct integration over
kernel function,
σ σ= ∫ ( ) ( )r N r dr

Gaussian quadrature,
σ σ= ∑w ri i( );
radii ri and weights wi
determined from moments

Advantages Explicit knowledge of size
distribution

Compact representation

Issues Numerical diffusion
between bins; many
variables Ni(ri) required

Closure of the set of
moment equations; non-
uniqueness of distributions



SUMMARY

There is a need for accurate and efficient representation of aerosol
microphysical properties in chemical transport models.

The Method of Moments (MOM) meets this need.  It is orders of
magnitude more efficient than discrete aerosol models and highly
accurate.

MOM does not provide the particle size distribution, but it tells you
(almost) everything else you want to know about the aerosol.

MOM is beginning to see application in atmospheric models by
several groups.

MOM is also being applied to combustion aerosols.  It has many
potential applications.

For further information see www.ecd.bnl.gov/steve/schwartz.html


